Quadratures for oscillatory and singular integrals
نویسندگان
چکیده
Numerical methods for strongly oscillatory and singular functions are given in this paper. Beside a summary of standard methods and product integration rules, we consider a class of complex integration methods, as well as Gaussian quadratures with respect to the oscillatory weight w(x) = xe, x ∈ [−1, 1]. Numerical examples are included.
منابع مشابه
TWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملComputing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures
An account on computation of integrals of highly oscillatory functions based on the so-called complex integration methods is presented. Beside the basic idea of this approach some applications in computation of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified Hermite weight are considered, including some numerical examples.
متن کاملExponential convergence of Gauss-Jacobi quadratures for singular integrals over high dimensional simplices
Galerkin discretizations of integral operators in R d require the evaluation of integrals R S (1) R S (2) f (x, y) dydx where S (1) , S (2) are d-dimensional simplices and f has a singularity at x = y. In [3] we constructed a family of hp-quadrature rules Q N with N function evaluations for a class of integrands f allowing for algebraic singularities at x = y, possibly non-integrable with respe...
متن کامل